organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiu-Zhen Wang,^a Zhao-Xuen Lian^b and Zun-Le Xu^b*

^aCollege of Pharmacy GuangDong Pharmaceutical University, Guangzhou 510224, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, University of Sun Yat-Sen, Guangzhou 510275, People's Republic of China

Correspondence e-mail: wxzqq1234@163.com

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.003 Å R factor = 0.040 wR factor = 0.119 Data-to-parameter ratio = 14.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Methyl 2,2',7'-trihydroxy-1,1'-binaphthalene-3-carboxylate acetone solvate

In the title compound, $C_{22}H_{16}O_5$, the two naphthyl units are approximately perpendicular. The 3-naphthylcarboxyl group and the *ortho*-hydroxyl group are involved in an intermolecular $O-H\cdots O$ hydrogen bond with $O\cdots O =$ 2.606 (2) Å. Molecules related by a glide plane are linked by an intermolecular $O-H\cdots O$ hydrogen bond with $O\cdots O =$ 2.747 (2) Å, creating a spiral. A solvent molecule is an acceptor in an $O-H\cdots O$ hydrogen bond with $O\cdots O =$ 2.700 (2) Å.

Comment

1,1'-Binaphthol and its derivatives are used as chiral auxiliaries in stereoselective organic synthesis (Nishizawa *et al.*, 1981; Noyori *et al.*, 1979; Naruse *et al.*,1988; Hesemann & Moreau, 2003; Teo *et al.*, 2005; Guo *et al.*, 2006). These compounds can be prepared by various methods (Feringa & Wynberg, 1977; Toda *et al.*, 1989; Nakajima *et al.*, 1999; Xin *et al.*, 2002). However, oxidative coupling of 2-naphthols is the most direct procedure.

In the present work, compound (I) was obtained from crosscoupling compounds (II) and (III) under catalysis of the CuCl₂·2H₂O complex of tetramethylethylenediamine (TMEDA) (1:2) in methanol. The cross-coupling reaction took place at room temperature. The molecule of (I) in the crystal structure reveals intramolecular hydrogen bonding (Fig. 1 and Table 1). Details of intermolecular hydrogen bonds between the hydroxyl groups at O4 and O5, and between the O5 hydroxyl group and acetone (Table 1 and Fig. 2) illustrate their effect on the crystal packing. The relative orientation of the naphthyl ring systems is defined by the torsion angle C9-C10-C12-C21 of -102.9 (2)°. This overall conformation reduces repulsion between the O3 and O5 hydroxyl groups.

Experimental

Under the catalysis of the complex of $CuCl_2 \cdot 2H_2O$ -TMEDA (1:2) in methanol (15 ml), the cross-coupling of (II) (0.202 g) and (III) (0.160 g) afforded compound (I), which was purified through a short column of gel silica (eluted with petroleum ether–EtOAc, 4:1). It was crystallized from acetone (yield 88.4%; m.p. 519–521 K). Analysis

© 2007 International Union of Crystallography All rights reserved Received 6 October 2006

Accepted 30 November 2006

calculated for C₂₂H₁₆O₅: C 73.33, H 4.48%; found: C 72.63, H 4.54.

Z = 4

 $D_x = 1.289 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

 $\mu = 0.09 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.021$

 $\theta_{\rm max} = 26.0^\circ$

Block, colourless

 $0.40 \times 0.30 \times 0.25 \text{ mm}$

11034 measured reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0542P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 0.4103P]

 $\Delta \rho_{\text{max}} = 0.15 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.16 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$

4184 independent reflections 2707 reflections with $I > 2\sigma(I)$

Crystal data

 $C_{22}H_{16}O_5 \cdot C_3H_6O$ $M_r = 418.43$ Monoclinic, $P2_1/c$ a = 13.477 (4) Å b = 12.062 (4) Å c = 14.049 (4) Å $\beta = 109.223$ (6)° V = 2156.5 (12) Å³

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.957, T_{\max} = 0.971$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.119$ S = 1.024184 reflections 286 parameters H-atom parameters constrained

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O5−H5A…O6	0.82	1.88	2.700 (2)	176
$O3-H3A\cdots O1$	0.82	1.88	2.606 (2)	148
$O4-H4\cdots O5^{i}$	0.82	1.93	2.7466 (19)	171

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

H atoms were located in a difference map and constrained to ride on their parent atoms [distances 0.82 (OH), 0.93 (CH) and 0.96 Å (CH₃)], with $U_{iso}(H) = 1.2$ (1.5 for methyl and hydroxyl) times $U_{eq}(C,O)$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

We are grateful for funding from the National Natural Science Foundation of Guangdong Province.

References

Bruker (1997). SMART (Version 5.6), SAINT (Version 5.06A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA. Feringa, B. & Wynberg, H. (1977). Tetrahedron Lett. 50, 4447–4450.

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular hydrogen bond is indicated by a dashed line.

Figure 2 Packing diagram of (I), with hydrogen bonds shown as dashed lines.

- Guo, Q. S., Lu, Y. N., Liu, B., Xiao, J. & Li, J. S. (2006). J. Organomet. Chem. 691, 1282–1287.
- Hesemann, P. & Moreau, J. J. E. (2003). C. R. Chim. 6, 199-207.
- Nakajima, M., Miyoshi, I. & Kanayama, K. (1999). J. Org. Chem. 64, 2264–2271.
- Naruse, Y., Esaki, T. & Yamamoto, H. (1988). *Tetrahedron Lett.* 29, 1417–1420.
 Nishizawa, M., Yamada, M. & Noyori, R. (1981). *Tetrahedron Lett.* 22, 247–250.
- Noyori, R., Tomino, I. & Nishizawa, M. (1979). J. Am. Chem. Soc. 101, 5843– 5844.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Teo, Y. C., Goh, E. L. & Loh, T. P. (2005). Tetrahedron Lett. 46, 6209-6211.
- Toda, F., Tanaka, K. & Iwata, S. (1989). J. Org. Chem. 54, 3007-3009.
- Xin, Z. Q., Da, C. S., Dong, S. L., Liu, D. X., Wei, J. & Wang, R. (2002). Tetrahedron Asymmetry, 13, 1937–1940.